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Describing Data: Part II 



Lecture Topics 

  The normal distribution 

  Means, variability, and the normal distribution 

  Calculating normal (z) scores 

  Means, variability and z-scores for non-normal distributions 
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The Normal Distribution 

Section A 



The Normal Distribution 

  The normal distribution is a theoretical probability distribution that 
is perfectly symmetric about its mean (and median and mode), and 
had a “bell” like shape 
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The Normal Distribution 

  The normal distribution is also called the “Gaussian distribution” in 
honor of its inventor Carl Friedrich Gauss 
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The Normal Distribution 

  Normal distributions are uniquely defined by two quantities: a mean 
(µ), and standard deviation (σ) 

  There are literally an infinite number of possible normal curves, for 
every possible combination of (µ) and (σ) 
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The Normal Distribution 

  Normal distributions are uniquely defined by two quantities: a mean 
(µ), and standard deviation (σ) 

  There are literally an infinite number of possible normal curves, for 
every possible combination of (µ) and (σ) 

  This function defines the normal curve for any given (µ) and (σ)  
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Normal Distribution 

  Areas under a normal curve represent the proportion of total values 
described by the curve that fall in that range 
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Normal Distribution 

  This shaded area represents the proportion of values (observations) 
between 0 and 1 following a normal distribution with µ = 0 and σ = 1 

  The shaded area is  
approximately 29% of  
the total area under  
the curve 
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Normal Distribution 

  The normal distribution is a theoretical distribution: no real data 
will truly be normally distributed (at the sample or population level)  
-  For example: the tails of the normal curve are “infinite” 
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Normal Distribution 

  BUT: some data approximates a normal curve pretty well 

  Here is a histogram of the BP of the 113 men with a normal curve 
superimposed (normal curve has same mean and SD as sample of 113 
men) 
-  Mean 123.6 mmHG, SD 12.9 mmHg 
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Normal Distribution 

  Other data, does not approximate a normal distribution 

  Here is a histogram of the hospital length of stay of the 500 patients 
with a normal curve superimposed (normal curve has same mean 
and SD as sample of 500 patients) 
-  Mean 5.1 days, SD 6.4 days 
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Variability in the Normal Distribution: Calculating Normal 
Scores 

Section B 



The Standard Normal Distribution 

  The standard normal distribution has a mean of 0, and standard 
deviation of 1 
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The 68-95-99.7 Rule for the Normal Distribution 

  68% of the observations fall within one standard deviation of the 
mean 

4 



The 68-95-99.7 Rule for the Normal Distribution 

  95% of the observations fall within two standard deviations of the 
mean (truthfully, within 1.96) 
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The 68-95-99.7 Rule for the Normal Distribution 

  99.7% of the observations fall within three standard deviations of 
the mean  
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Fraction of Observations under Standard Normal 
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Within Z SDs of 
the mean 

More than Z 
SDs above the 
mean 

More than  
Z SDs above 
or below the 
mean 

Z 

1.0 68.27% 15.87% 31.73% 

2.0 95.45% 2.28% 4.55% 

2.5 98.76% 0.62% 1.24% 

3.0 99.73% 0.13% 0.27% 
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The 68-95-99.7 Rule for the Normal Distribution 

  What about other normal distributions with other means and 
standard deviations? 

  Same exact properties apply 

  In fact, any normal distribution with any mean and standard 
deviation can be transformed to a standard normal curve 
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Transforming to Standard Normal 

  The standard normal curve (blue) and another normal with mean -2, 
and standard deviation 2 

11 



Transforming to Standard Normal 

  To center at zero, subtract of mean of -2 from each observation 
under the red curve 
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Transforming to Standard Normal 

  To “change shape” (i.e., change spread; i.e., standard deviation) 
divide each “new observation” by standard deviation of 2 
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Transforming to Standard Normal 

  To “change shape” (i.e., change spread; i.e., standard deviation) 
divide each “new observation” by standard deviation of 2  
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Transforming to Standard Normal 

  This process is called standardizing or computing z-scores 

  A z-score can be computed for any observation from any normal 
curve 

  A z-score measures the distance of any observation from its 
distribution’s mean in units of standard deviation 

  This z-score can help asses where the observations fall relative to 
the rest of the observations in the distribution 

  z-score computed by: 
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Example 1: Blood Pressure in Males 

  Histogram of BP values for random sample of 113 men suggest BP 
measurements approximated by a normal distribution 
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Example 1: Blood Pressure in Males 

  Data in Stata 
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Example 1: Blood Pressure in Males 

  Summarize command gives sample mean and standard deviation 
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  Summarize command gives sample mean and standard deviation 
(and sample size, minimum and maximum values) 

Example 1: Blood Pressure in Males 
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Example 1: Blood Pressure in Males 

  Using the sample data, let’s estimate the range of blood pressure 
values for “most” (95%) of men in the population 

  For normally distributed data, 95% will fall within 2 sds of the mean 

  Again, this is just an estimate using the best guesses from the 
sample for mean and sd of the population 
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Example 1: Blood Pressure in Males 

  Suppose a man comes into my clinic, gets his blood pressure 
measured, and wants to know how he compares to all men 

  His blood pressure is 130 mmHg 

  What percentage of men have blood pressures greater than 130 
mmHg? 

  Translate to z-score 

  Question akin to “what percentage of observations under a standard 
normal curve are 0.5 sds or more above the mean in value?” 
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Example 1: Blood Pressure in Males 

  Could look this up in a normal table (more extensive tables can be 
found in the back of any stats book or by searching online) 

  Could also use normal function in Stata 
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Example 1: Blood Pressure in Males 

  Typing display normal(z) at command line gives proportion of 
observation less than z standard deviations from mean: 
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Example 1: Blood Pressure in Males 

  For z = 0.5, roughly 69% percent of observations fall below .5 sds 
from mean 
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Example 1: Blood Pressure in Males 

  For z = 0.5, roughly 100%-69% = 31% of observations fall above .5 sds 
from mean 
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Example 1: Blood Pressure in Males 

  So approximately 31% of all men have blood pressures greater than 
our subject with a blood pressure of 130 

  What percentage of men have blood pressures more extreme, i.e. 
farther than .5 sds from the mean of all men in either direction? 
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Example 1: Blood Pressure in Males 

  What we want 

27 



Example 1: Blood Pressure in Males 

  By symmetry of normal curve, 31% of observations are above .5 sd, 
and 31% below -.5 sd 

  So a total of 62% is farther than .5 sds from mean in either direction 
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Normal Scores and Variability in Non-Normal Data 

Section C 



Why Do We Like The Normal Distribution So Much? 

  The truth is, there is nothing “special” about standard normal 
scores 
-  These can be computed for observations from any sample/

population of continuous data values 
-  The score measures how far an observation is from its mean in 

standard units of statistical distance 

3 



Why Do We Like The Normal Distribution So Much? 

  However, unless population/sample has a well known, “well 
behaved” (like a normal) distribution, we may not be able to use 
mean and standard deviation to create interpretable intervals, or 
measure “unusuality” of individual observations 
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Hospital Length of Stay Example 

  Random sample of 500 patients 
-  Mean length of stay: 4.8 days 
-  Median length of stay: 3 days 
-  Standard deviation: 6.3 days 

  Data in Stata 
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Hospital Length of Stay Example 

  Random sample of 500 patients 
-  Mean length of stay: 4.8 days 
-  Median length of stay: 3 days 
-  Standard deviation: 6.3days 
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Hospital Length of Stay Example 

  Summarize command with detail option 

7 



Hospital Length of Stay Example 

  Summarize command with detail option 

8 



Hospital Length of Stay Example 

  Histogram of sample data 
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Constructing Intervals 

  Suppose I wanted to estimate an interval containing roughly 95% of 
the values of hospital length of stay in the population 

  Distribution right skewed—can not appeal to properties/methods of 
normal distribution! 

  Mean ± 2SDs 
-  4.8 ± 2×6.3 
-  This gives an interval from -7.8 to 17.4 days! 
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Hospital Length of Stay Example 

  Histogram of sample data 
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Constructing Intervals 

  We would need to estimate this interval from the histogram and/or 
by finding sample percentiles 
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Constructing Intervals 

  Using percentiles 
-  Syntax “centile varname, c(#1, #2, . . .)” 
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  Using percentiles 
-  Syntax “centile varname, c(#1, #2, . . .)” 

-  So based on this sample data we estimate that 95% of 
discharged patients had length of stay between 1 and 24 days 

Constructing Intervals 
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Constructing Intervals 

  What percentage of patients had length of stay greater than five 
days? 

  (Wrong approach) z-score 

  Assuming normality, this would suggest that nearly 50% of the 
patients had length of stay greater than five days 
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Hospital Length of Stay Example 

  According to percentiles, five days is the 75th percentile: so only 
25% of the sample have length of stay over 5 days 
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